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Abstract— Functional Near-Infrared Spectroscopy (fNIRS) 
and its extension, Diffuse Optical Tomography (DOT), are 
emerging non-invasive neuroimaging techniques that measure 
brain activities by monitoring changes in blood oxygenation 
using near infrared light. However, motion artifacts from 
subject movements in fNIRS/DOT data could severely 
undermine data quality. Current solutions typically rely on 
offline methods executed on conventional computers in 
laboratories/hospitals, limiting real-time applications and 
flexibility in wider environments. To address these limitations, 
we present an FPGA-based multi-channel real-time motion 
artifact detection system. The proposed system, tested against 
an expert-annotated dataset, showcases encouraging overall 
performance, with a minimal delay of 2.75 ms across 12-channel 
raw fNIRS data, and boasts a sensitivity rate of 85.28% and 
accuracy of 87.06%. This efficiency is achieved using less than 
10% of FPGA resources, underscoring that the proposed real-
time processing system holds the potential to be scaled up to 
3630 channels. These results indicate a promising avenue 
towards real-time motion artifact processing in large-size multi-
channel fNIRS/DOT data. Our design lays the groundwork for 
its application in areas including wearable real-time functional 
brain imaging, brain-computer interfaces, human-robot 
interaction, and surgical monitoring. 

Keywords— functional near-infrared spectroscopy, diffuse 
optical tomography, motion artifact, real-time, FPGA, wearable. 

I. INTRODUCTION  
Functional Near-Infrared Spectroscopy (fNIRS) is a non-

invasive, portable neuroimaging technique [1],[2]. It 
capitalizes on the unique absorption spectra of oxygenated and 
deoxygenated forms of hemoglobin, the molecule responsible 
for oxygen transport in the bloodstream, within the near-
infrared wavelength range (Fig. 1a). As depicted in Fig. 1b, a 
near-infrared light source and a detector are positioned on the 
scalp. This setup, consisting of the light source and the 
detector, is referred to as an optical channel. By observing 
variations in the intensity of near-infrared light as it traverses 
the scalp and brain (as shown in Fig. 1b), it is possible to 

deduce changes in the concentration of oxy-hemoglobin 
(HbO) and deoxy-hemoglobin (HbR). Due to the distinct 
absorption characteristics of HbO and HbR within the near-
infrared spectrum, analyzing these differential absorption 
rates across specific wavelengths allows for the determination 
of changes in their concentrations. Such concentration 
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Fig. 1 a) The absorption spectra of HbO and HbR in the Near-Infrared 
Wavelength Range (650 to ∼1000 nm). fNIRS systems typically operate at two 
wavelengths, usually with one above and one below the isosbestic point 
(808nm), at which HbO and HbR demonstrate the same absorption coefficient; 
b) Illustration of the source-detector pair in an fNIRS system, depicting the 
light path. 

 

 
Fig. 2 a) Example of a HD-DOT system, LUMO and b) its source-detector 
array layout; c) Activation maps obtained from visual stimulus using the 
LUMO HD-DOT system [5]. 



variations provide valuable insights into cerebral 
hemodynamic activity. 

Diffuse Optical Tomography (DOT) is a more advanced 
offshoot of fNIRS. By deploying an array of multiple near-
infrared light sources and detectors positioned on the scalp, 
the light emitted from a single source can be detected by 
several detectors (with various source-detector separations), 
achieving overlapping spatial sampling for 3D neuroimaging 
[3]. Building upon this, high-density DOT (HD-DOT) further 
refines the DOT technique by incorporating a denser, high-
density source-detector array. An example of wearable HD-
DOT device, LUMO (Gowerlabs Ltd. UK) [4], is shown in 
Fig. 2a. Sources and detectors are placed beneath the hexagon 
modules, connected to fibers that directly coupled to the scalp. 
With a high-density source-detector layout detailed in Fig. 2b, 
the shown setting of LUMO can provide up to 1728 optical 
measurement channels[5]. This advanced configuration 
facilitates improved spatial resolution, empowering the device 
to generate high-resolution 3D brain activation map shown in 
Fig. 2c. Furthermore, the incorporation of varied source-
detector separation optimizes both lateral and depth 
specificity. fNIRS, DOT, and HD-DOT have facilitated 
functional neuroimaging of the human cortex, offering more 
accessible, portable/wearable, cost-efficient, and user -
friendly solutions in diverse settings [6]. Such advancements 
have the potential to bridge gaps in clinical and healthcare 
applications, particularly in areas previously constrained by 
the availability of sophisticated neuroimaging technology, as 
demonstrated in recent studies [7]–[9].  

Despite significant advancements in fNIRS/DOT 
technologies, subject movements during data collection can 
impact the collected data quality, as head motions lead to 
decoupling between the source/detector fiber and the scalp, 
resulting in high-frequency spikes and shifts from the baseline 
intensity in the measured signals [10], as illustrated in Fig. 3. 
For an accurate estimation of the hemodynamic response 
function (HRF), it is crucial to detect and remove these motion 
artifacts. While numerous methods for motion artifact 
detection and correction have been proposed, the majority 
operate offline after the experiment has concluded [10]. Such 
post-experiment processing, compared to real-time (online) 
detection, is less efficient, risking missed data and not 
adjusting promptly to a subject’s in-session behavior. These 
limitations increasingly underscore the importance and 
demand of advancing real-time processing in fNIRS 
technology. 

Recent studies have introduced various online techniques 
for fNIRS motion artifact detection. Barker et al. [11] used a 
modified linear Kalman filter to detect and correct the motion 
artifact in real-time. Zhao et al. [12] used Targeted median 
filter for online motion artifact detection. Gao et al. [13] used 
a convolution neural network based denoising autoencoder 
(DAE) with the potential to be applied in real-time. 

However, these processing techniques are reliant on 
separated benchtop computers, constraining fNIRS/DOT to 
laboratory environments and posing challenges related to 
scalability and increased processing time as the number of 
measurement channels increases, which is directly related to 
fNIRS/DOT spatial resolution. Additionally, although these 
methods might show efficiency for basic fNIRS devices with 
limited number of channels, systems like DOT and HD-DOT, 
which have a significantly higher channel number, pose a 
greater challenge. As the channel number increases, the 
computational cost and system delay swell due to the 
augmented processing load and memory requirements for 
handling a larger dataset. This could potentially affect the 
efficiency of real-time processing capabilities. 

Herein, we proposed an FPGA-based module tailored for 
real-time, multichannel motion artifact detection in 
fNIRS/DOT, and the conceptual diagram is illustrated in Fig. 
4. The advantages of this design include: (1) The inherent real-

 
Fig. 3 An example of motion artifacts in fNIRS channel signal. 

 
Fig. 4 Overview of the proposed system. The circled area is our proposed design to achieve wearable, real-time motion artifact detection. 



time processing proficiency enables instantaneous 
identification of motion artifacts, ensuring that data quality is 
maintained throughout the course of fNIRS/DOT monitoring. 
This immediacy is crucial for applications requiring live 
feedback, such as neurofeedback training or brain-computer 
interfaces; (2) Its capability to potentially integrate into 
current fNIRS/DOT devices, thereby obviating the 
requirement of a separate computer for motion artifact 
detection during experiments, and (3) scalability for parallel 
processing across multiple channels, ensuring fast processing 
without added delay, which is also suitable for DOT and HD-
DOT. This paper is organized as follows: Section II details the 
proposed motion artifact detection technique; Section III 
presents and analyzes the experimental results; and Section IV 
concludes the paper. 

II. PROPOSED TECHNIQUE 
Our approach employs a motion artifact detection method 

for fNIRS/DOT data that leverages spline interpolation, as 
advocated by [14]-[15]. This method rests on two premises: 
(1) The recorded fNIRS signal represents a linear combination 
of motion artifacts and the uncontaminated fNIRS signal, and 
(2) within segments corrupted by motion, the artifact 
component predominantly influences the recorded fNIRS 

signal. For a streamlined analysis, we identify motion artifacts 
by assessing both the variance and amplitude changes in 
adjacent data differences. When the peak squared difference 
within a specified time window surpasses either the 
predetermined variance-based threshold or amplitude square 
thresholds, the relevant data, along with the subsequent data 
within the time window are marked as motion artifacts. 

 The overall architecture of our system is presented in Fig. 
5. For the fNIRS/DOT data transmission, we employed a 
Universal Asynchronous Receiver-Transmitter (UART) 
interface, operating at a baud rate of 115200, to manage data 
exchange with the corresponding fNIRS/DOT device. The 
fNIRS/DOT data, which included the received light intensity 
with five decimal places, was transmitted in hexadecimal 
format. This interface was responsible for receiving the data 
and dispatching the flag of motion artifact. The received 
fNIRS/DOT data was first processed using a simple 
subtraction logic in the adjacent difference module crafted in 
Verilog. This processed data was subsequently channeled to 
the running variance module. Variance computations were 
conducted using Welford's online algorithm [16]. The 
computation details are shown in Fig. 6, where x is incoming 
data sample, m is the current data average and n is the number 
of the receiver data samples. This logic for variance 
computation was encoded in Verilog. The computed variance 
was then multiplied by the variance threshold, achieved using 
a data shift method, and subsequently compared to the 
amplitude squared threshold. The minimum threshold was 
applied to evaluate against the maximal squared difference 
observed in the fNIRS/DOT data over a designated time 
window. The parameter pairing for the variance and squared 
amplitude threshold was ascertained to be 16 and 0.16, 
respectively. This configuration can effectively distinguish 
significant data fluctuations attributable to subject movements 
from the more subtle variations induced by physiological 
phenomena such as heartbeat. Such discernment is crucial for 
ensuring that the system robustly detects motion-induced 
artifacts without erroneously classifying these physiological 
signals as artifacts. 

Concurrently, the fNIRS/DOT data was channeled to the 
submodule (shown in Fig. 5) computing the maximum 
squared difference within a specific time window. In this 
module, the present data is subtracted from the subsequent 11 
data points. By comparing these subtraction results pairwise, 
the maximal difference is ascertained and then squared to 
align with the same unit as the threshold calculated above. If 
the squared maximum difference surpasses the threshold, both 
the data from the current time frame and the following 11 data 

 
Fig. 5 The architecture of the proposed online motion artifact detection design. 

 
Fig. 6 The online variance calculation in the proposed design. 

 
Fig. 7 Visual depiction of the key FPGA resource of proposed design and the 
utilization of these resources within the FPGA. 



points are identified as motion artifacts. The detection result 
was then transmitted to the UART interface back to the 
fNIRS/DOT device. 

We implemented our design using Verilog and deployed it 
on a Xilinx AXU3EG FPGA board [17] for performance 
evaluation. The overall FPGA resource utilization is 
illustrated in Fig. 7.  

To evaluate the system performance of the proposed real-
time motion artifact detector, we utilized a HD-DOT dataset 
collected from infant subjects using a 12-tile LUMO device 
(Gowerlabs Ltd., UK), which captures fNIRS/DOT data at a 
sampling rate of 12 Hz. The targeted population, infants, are 
particularly challenging in the context of fNIRS/DOT data 
acquisition due to their unpredictable movements, which pose 
a high risk of introducing motion artifacts into the data. 

Each tile of the LUMO system is intricately equipped with 
three light sources and four detectors. This configuration 
results in twelve source-detector channels per tile, enabling 
dense spatial sampling critical for the detailed mapping of 
cerebral hemodynamics. The compiled dataset is comprised of 
recordings from ten subjects, each providing data from twelve 
tiles, which culminates in a total of 144 within-tile channels. 
The range of the data across subjects is notably diverse, with 
the shortest span of recording consisting of approximately 
1951 data points (~162 seconds) and the longest recording 
comprising up to 5617 data points (~468 seconds). In total, the 
dataset amasses more than 32,200 temporal data points, with 
each timepoint reflecting information from 144 channels of 
DOT data. 

The ground truth result of motion artifact identification 
within this extensive dataset was collectively conducted by 
four professionally-trained fNIRS/DOT experts. Given the 
extensive scale of the dataset and the highly correlated nature 
of the short channels within each tile, a tile-centric approach 
was deliberately adopted to mitigate the laboriousness of 
channel-specific labeling. If any single channel within a tile 
was observed to contain motion artifacts, the entire tile was 
marked accordingly. This labeling strategy provided a well-
founded basis for the motion artifact detection system, 
assuring a trustworthy assessment of motion artifacts. The 
detection outcomes from the FPGA were compared with the 
expert-labelled ground truth labelled results and depicted in 
Section III below. 

III. RESULTS 
The system proposed here delivers rapid decision-making 

capabilities, evidenced by a minimal delay of 2.75 ms in 
detecting motion artifacts across 12-channel raw fNIRS/DOT 
data. The efficient processing of the system at a 12Hz frame 
rate, using under only 10% of FPGA resources, suggests it 
could potentially extend to real-time processing of 
approximately 3630 channels. Fig. 8 visually represents this 
process, with areas indicating detected motion artifacts 
distinctly shaded for clarity. Subsequent comparative analysis 
with manually expert-labeled ground truth data is depicted in 
Fig. 9.  

In evaluating the efficacy of our fNIRS/DOT motion 
artifact detection system, we computed key performance 
metrics including sensitivity, specificity, precision, and 
accuracy. Sensitivity, or the true positive rate (in our case, 
positive means the data has motion artifact), is crucial in this 
context as it reflects the system's capability to correctly 

identify instances of motion artifacts, thereby allowing for 
immediate corrective action during experimental conditions. 
Specificity measures the system's capacity to correctly discern 
non-artifact periods, avoiding false alarms that could lead to 
unnecessary data exclusion or interruptions in data collection. 
Precision, the proportion of true positives among all positive 
identifications, underscores the system's exactness, 
minimizing the risk of discarding valuable data. Lastly, 
accuracy represents the overall correctness of the system 
across all classifications, ensuring the system's reliability.  

Our system's performance was rigorously evaluated by 
comparing its performance against Homer3 [18], a widely 
adopted MATLAB toolbox for offline fNIRS/DOT data 
analysis and motion artifact detection. The comparison 
revealed that our system achieved a sensitivity rate of 85.28%, 
higher than Homer3's 74.94%. Additionally, our accuracy 
stands at 87.06%, which is an improvement over Homer3's 
accuracy of 83.21%. These results not only underscore the 
robustness and reliability of our detection algorithm but also 
mark a significant step forward in the precision of multi-
channel real-time motion artifact detection within this field. 
Comprehensive performance metrics of the proposed 
detection system against Homer3 are cataloged in Table I. 

 
Fig. 8 Raw fNIRS data across 12 channels with shaded regions indicating 
motion artifacts detected by the proposed design. 

 
Fig. 9 Detection outcomes as percentages: True Positives (TP)+True 
Negative (TN), False Negatives (FN), and False Positives (FP). 

TABLE I.  PERFORMANCE METRICS OF THE PROPOSED MOTION 
ARTIFACT DETECTION SYSTEM. 

Performance 
Metric (%) Proposed System Homer3 (Traditional) 

Sensitivity 85.28 74.94 

Specificity 89.11 90.89 

Precision 89.98 88.40 

Accuracy 87.06 83.21 

 



IV. DISCUSSION AND CONCLUSION 
Our motion artifact detection system showcases an 

encouraging capability in real-time processing of multi-
channel fNIRS/DOT data, achieving a fine sensitivity of 
85.28% and an accuracy of 87.06%. These results indicate a 
high degree of reliability in identifying true motion artifacts, a 
vital factor in the practical applications of fNIRS/DOT 
technologies. While benchtop computers might reach 
comparable processing speeds, our FPGA design stands out 
due to its inherent advantages. The strong parallel 
computation capability of FPGA not only ensures clearly 
faster data processing compared to traditional benchtop 
computers but also significantly enhances the precision of data 
acquisition, particularly when managing the vast volumes of 
data channels associated with DOT/HD-DOT devices. 

This real-time processing capability is crucial for the 
integrity and reliability of emerging fNIRS/DOT-based real-
time applications, such as real-time brain imaging, brain-
computer interface, human-robot interaction, surgical 
monitoring, and beyond. Moreover, the portability and cost-
effectiveness of FPGA make it suitable for dynamic 
application environments, negating the necessity for 
cumbersome and pricey computing infrastructure. For high-
channel number DOT devices, the attributes of the FPGA 
offer a blueprint for smooth integration, bolstering the 
adaptability and scalability of the devices. 

As fNIRS/DOT technologies continue to advance, our 
FPGA-based multichannel, real-time processing approach 
marks a pivotal progression, as evidenced by its superior 
sensitivity and precision in detecting motion artifacts. This 
innovation fosters a more robust application of fNIRS/DOT 
methodologies beyond controlled laboratory/hospital settings, 
ensuring the acquisition of reliable and accurate data even at 
almost any environment.  
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